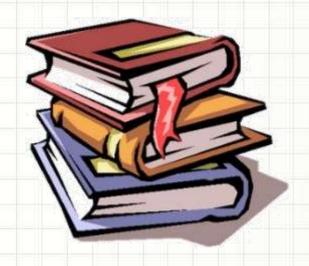


Objetivos

- Recordar o conceito de vetor posição
- Recordar o conceito de vetor força
- Recordar as operações vetoriais no plano

Atividade Aula 2 – SAVA!

Material de Estudo



Material	Acesso ao Material
Apresentação	http://www.caetano.eng.br/ (Mecânica Geral – Aula 2)
Material Didático	Páginas 9 a 28
Biblioteca Virtual	Estática, Mecânica para Engenharia (Hibbeler), Cap.2
Aula Online	Aula 1

Antes de Mais nada...

- Não deixe de consultar o material da 1º Aula!
- Otimize seus estudos!
 - Toda semana acessar o SAVA!
 - Se preparar para conteúdo da semana seguinte!
- Exercícios Semanais
 - Exercícios propostos a cada aula: SAVA
- Será controlada a presença
 - Chamada ocorrerá sempre às 20:30/22:25
 - Nome fora da lista = falta
- Contato

Professor Informações de Contato

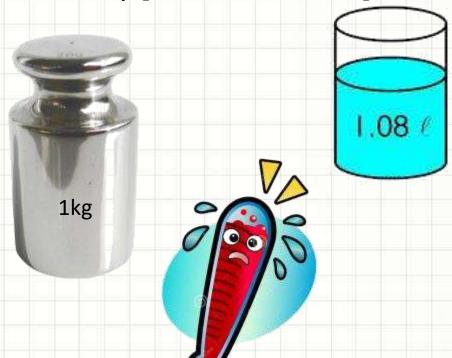
Daniel Caetano

prof@caetano.eng.br

Grandezas Escalares

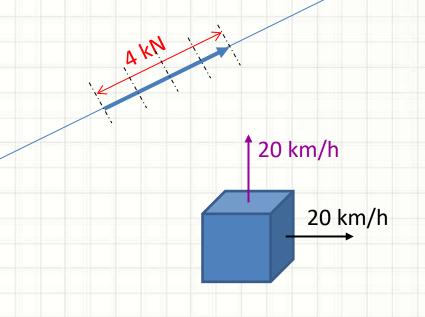
- O que é uma grandeza escalar?
- Aquela cuja medida é completa com:
 - Um valor (ou intensidade) [e sua unidade]

- Exemplos:
 - Massa
 - Temperatura
 - Volume



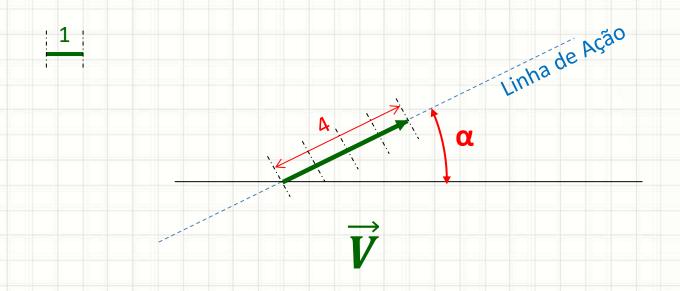
Grandezas Vetoriais

- O que é uma grandeza vetorial?
- Aquela cuja medida é completa depende de:
 - Um valor (ou intensidade) [e sua unidade]
 - Uma direção
 - Um sentido
- Exemplos:
 - Velocidade
 - Aceleração
 - Força



A Representação Vetorial

- É uma representação gráfica
 - Intensidade: comprimento do segmento
 - Direção: é dada por um ângulo a um eixo fixo
 - Sentido: a ponta de uma seta



Somar / Subtrair Vetores

Como somar vetores?

"Encadeamos" os vetores:

• E como fica $\vec{S} = \vec{A} - \vec{B}$?

Se
$$|\overrightarrow{A}| = 3$$
 e $|\overrightarrow{B}| = 2...$ $|\overrightarrow{R}| = ?$

$$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$$

$$|\overrightarrow{R}| = 5$$

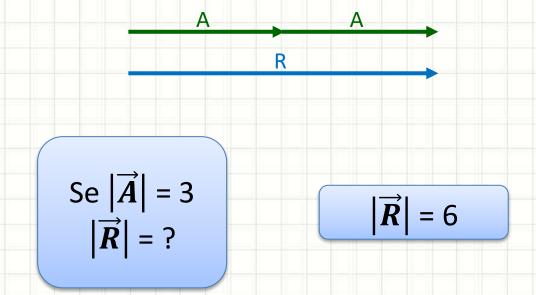
$$|\vec{S}| = ?$$

$$|\vec{S}| = 1$$

Multiplicar Vetor por Escalar

• Como calcular $\vec{R} = 2. \vec{A}$?

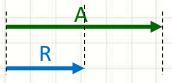
• Mesma lógica da soma... $\vec{R} = 2$. $\vec{A} = \vec{A} + \vec{A}$



Dividir Vetor por Escalar

• Como calcular $\vec{R} = \vec{A}/2$?

Considere a divisão "geométrica"



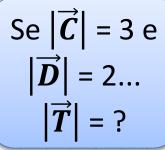
Se
$$|\overrightarrow{A}| = 3$$

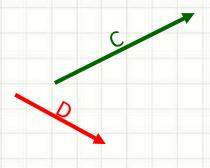
 $|\overrightarrow{R}| = ?$

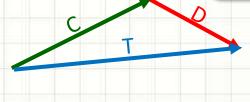
$$|\overrightarrow{R}| = 1.5$$

Somar / Subtrair Vetores

• Como fica $\overrightarrow{T} = \overrightarrow{C} + \overrightarrow{D}$?

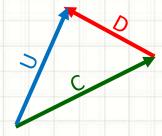






• E como fica $\overrightarrow{U} = \overrightarrow{C} - \overrightarrow{D}$?

$$|\overrightarrow{\boldsymbol{U}}| = ?$$



Lei dos Cossenos e Lei dos Senos

Mais detalhes no livro indicado!

Lei dos Cossenos

Se
$$|\overrightarrow{C}| = 3$$
 e $|\overrightarrow{D}| = 2... |\overrightarrow{T}| = ?$

• Para calcular $|\vec{T}|$ precisamos deste ângulo:

$$\left|\overrightarrow{T}\right| = \sqrt{\left|\overrightarrow{C}\right|^2 + \left|\overrightarrow{D}\right|^2} - 2 \cdot \left|\overrightarrow{C}\right| \cdot \left|\overrightarrow{D}\right| \cdot \cos t$$

• Por exemplo, se $t = 120^{\circ}$...

$$|\vec{T}| = \sqrt{3^2 + 2^2 - 2 \cdot 3 \cdot 2 \cdot \cos 120^\circ}$$

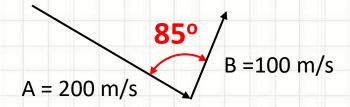
$$|\vec{T}| = \sqrt{9 + 4 - 12.(-0,5)}$$

$$|\vec{T}| = \sqrt{13+6}$$

Não é muito prático, não?

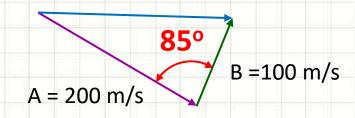
Exercício

• Calcule $\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$



Exercício

• Calcule $\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$



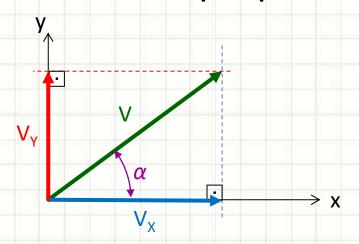
$$|\overrightarrow{R}| = \sqrt{|\overrightarrow{A}|^2 + |\overrightarrow{B}|^2 - 2 \cdot |\overrightarrow{A}| \cdot |\overrightarrow{B}| \cdot \cos 85^\circ}$$

$$|\vec{R}| = \sqrt{200^2 + 100^2 - 2.200.100.\cos 85^\circ}$$

$$|\vec{R}| = 215,67 \text{ m/s}$$

Vetores em um Plano

Sistema com dois eixos perpendiculares



Vetor V pode decomposto em 2 componentes

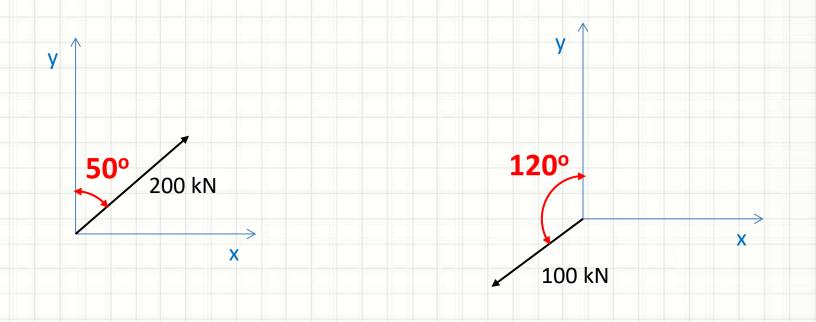
•
$$V_X$$
 $|\overrightarrow{V_x}| = |\overrightarrow{V}| \cdot \cos \alpha$
• V_Y $|\overrightarrow{V_y}| = |\overrightarrow{V}| \cdot \sin \alpha$

$$V_x = V \cdot \cos \alpha$$
 $V_y = V \cdot \sin \alpha$
Notação Escalar

$$V = |\vec{V}| = \sqrt{V_x^2 + V_y^2}$$

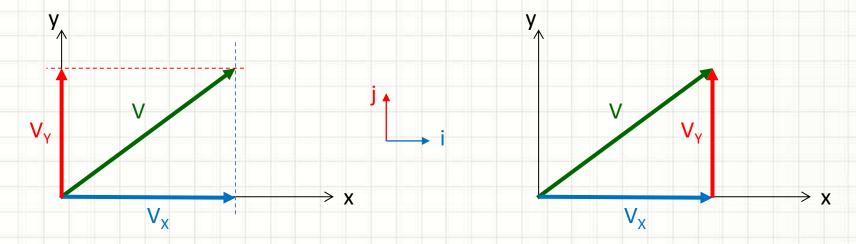
Exercício

• Calcule as projeções em x e y (decomponha):



Notação Cartesiana

Sistema cartesiano e os vetores ortonormais:

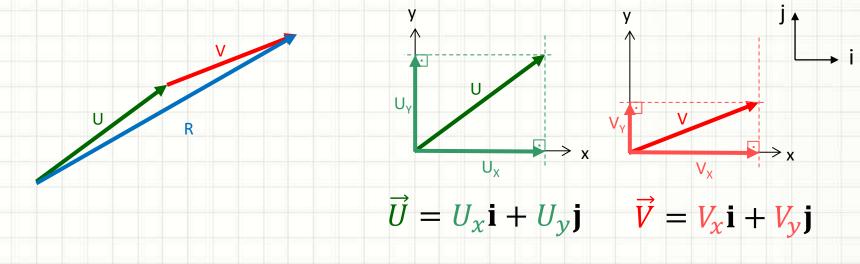


• Podemos descrever \vec{V} como:

$$\vec{V} = |\vec{V_x}|\vec{i} + |\vec{V_y}|\vec{j}$$
 Ou... $\vec{V} = V_x \mathbf{i} + V_y \mathbf{j}$
Vetor Cartesiano

Somando Vetores em um Plano

• Para $\vec{R} = \vec{U} + \vec{V}$, podemos usar o recurso:



$$\vec{R} = \vec{U} + \vec{V} = U_x \mathbf{i} + U_y \mathbf{j} + V_x \mathbf{i} + V_y \mathbf{j}$$

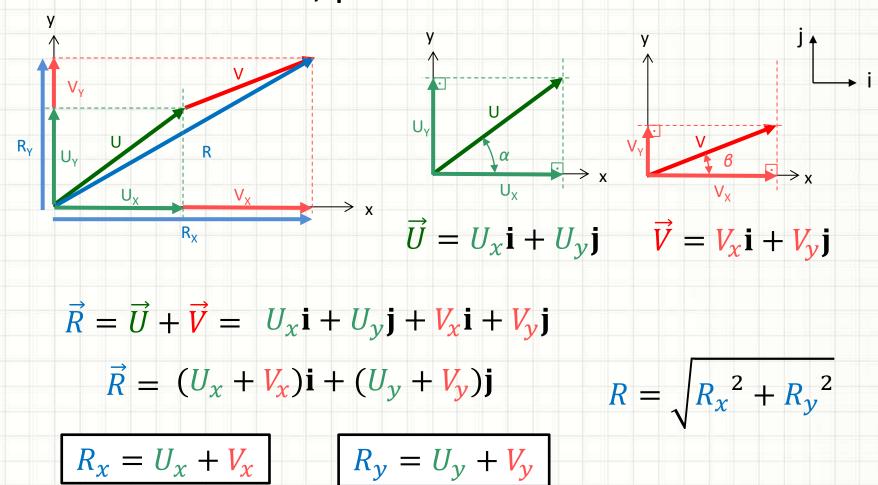
$$\vec{R} = (U_x + V_x) \mathbf{i} + (U_y + V_y) \mathbf{j}$$

$$R_{x} = U_{x} + V_{x}$$

$$R_{y} = U_{y} + V_{y}$$

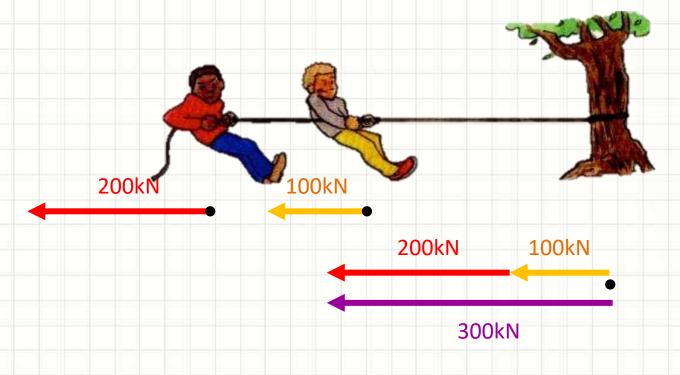
Somando Vetores em um Plano

• Para $\vec{R} = \vec{U} + \vec{V}$, podemos usar o recurso:



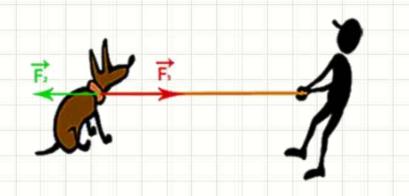
Resultante de Forças

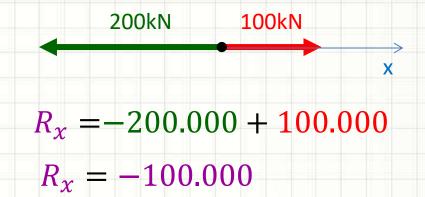
 Sempre que houver várias forças atuando em um ponto, podemos combiná-las por meio de suas componentes e calcular a resultante



Resultante de Forças

- Matematicamente, podemos dizer que a resultante é calculada por: $\vec{R} = \sum \vec{F}$
- Outro exemplo:

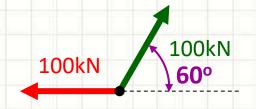




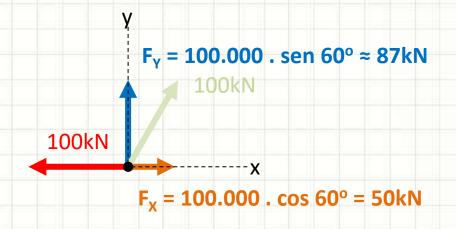
• Aplicar tais forças é equivalente a aplicar:

Resultante de Forças

• E quando não estão na mesma direção?



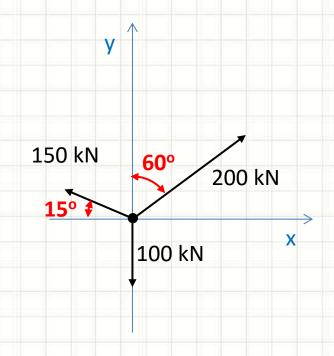
Calculamos pelas componentes!

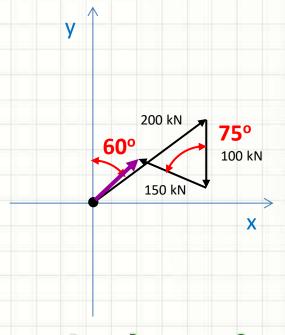


Qual a resultante?

Exercício

• Calcule a resultante:

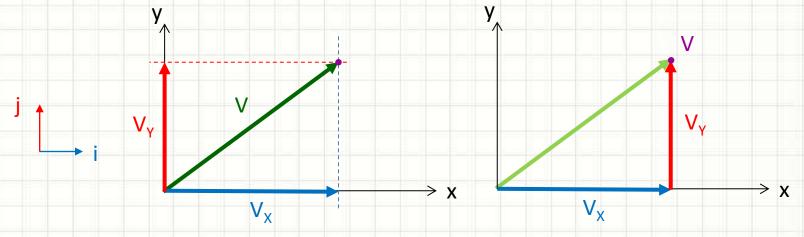




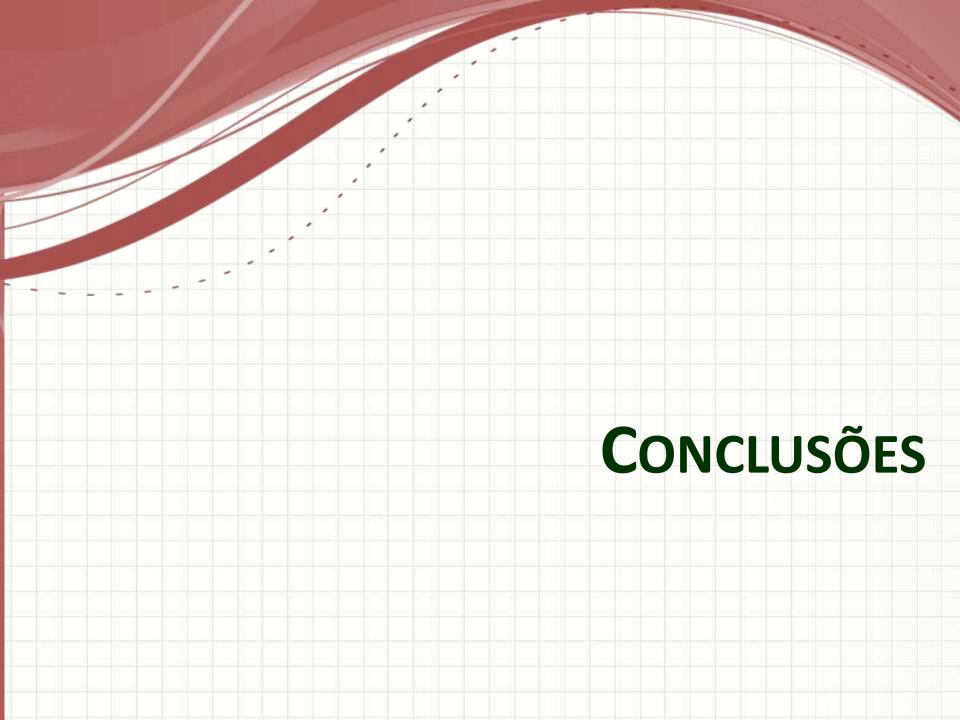
Equivalente!

Vetor Posição

• Considere \overrightarrow{V} e suas projeções cartesianas



- Pode-se interpretar $\vec{V} = V_x \mathbf{i} + V_y \mathbf{j}$ — Como a indicação de um ponto "V" no espaço!
- As coordenadas desse ponto são: $\vec{V}(V_x, V_y)$
- Observe que os vetores levam ao ponto V



Resumo

- Vetores são mais complexos que escalares...
- Mas são necessários para expressar forças
- Existem várias formas de representar
- Podem expressar posições no espaço
- TAREFA: Exercícios Aula 2

- Equilíbrio de Ponto Material
 - Aplicando vetores na engenharia: equilíbrio!
 - Primeiras noções para algo "parar em pé"!

