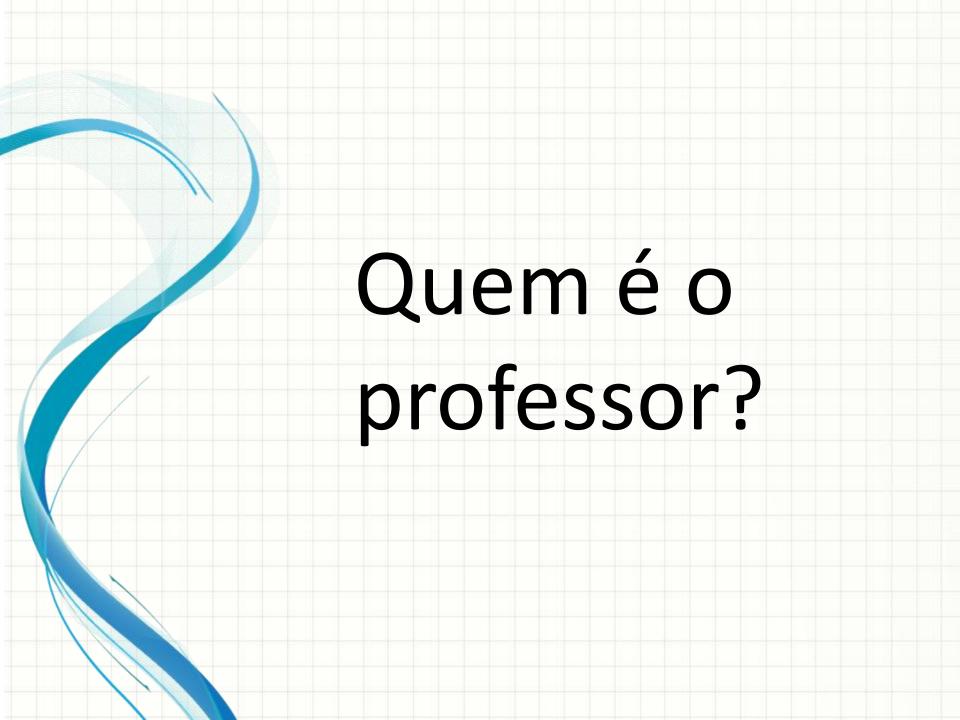


ESTRUTURA DE DADOS

INTRODUÇÃO ÀS ESTRUTURAS DE DADOS


Prof. Dr. Daniel Caetano 2014 - 2

Objetivos

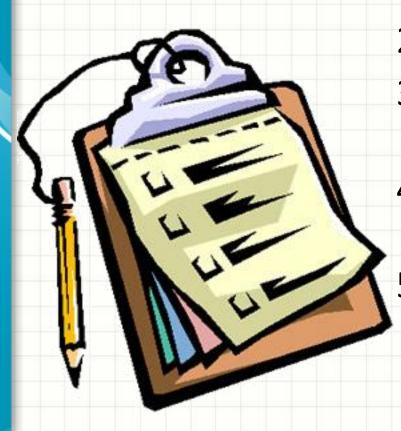
- Conhecer o professor e o curso
- Compreender o que são estruturas de dados e sua importância
- Relembrar conceitos de algoritmos

Apresentação

Vamos começar?

Quem É Quem – Lista de Presença

Professor Informações de Contato


Daniel Caetano <u>prof@caetano.eng.br</u>

Nome Completo	CPF	Matrícula	
Fulano	012.345.678-90	201101123456	
Beltrano	012.345.678-91	201101123457	
Cicrano	012.345.678-92	201101123458	

Plano de Ensino

Disponível no WebAula

- 1. Entre no SIA
- 2. CAMPUS VIRTUAL
- 3. MINHAS DISCIPLINAS PRESENCIAIS
- 4. Clique no **NOME DA DISCIPLINA**
- 5. Selecione **PLANO DE ENSINO**

Plano de Aula

- 28/07 0. Apresentação
- 04/08 1. Funções
- 11/08 2. Vetores e Laços
- 18/08 Exercícios
- 25/08 3. Listas Sequenciais
- 01/09 4. Listas: Ordenação
- 08/09 5. Listas: Ordenação
- 15/09 7. Pilhas
- 22/09 7. Pilhas
- 29/09 **P1**
- 06/10 8. Filas

- 13/10 9. Filas Circulares
- 20/10 10. Estruturas
- 27/10 11. Ponteiros
- 03/11 Exercícios
- 10/11 12. Listas Encadeadas
- 17/11 13. Pilhas Encadeadas
- 24/11 14. Filas Dinâmicas
- 01/12 **P2**
- 08/12 Vista de Prova
- 16/12 **P3**

TRABALHOS, DATAS E CRITÉRIO DE APROVAÇÃO

Trabalhos, Datas e Aprovação

Trabalho	Valor	C.H.	Entrega
AE1 (Grupo / Individual)	2,0 na AV1	8h	31/08 (SIA)
P1 (Individual / Com Consulta*)	8,0 na AV1	2h	29/09 (Aula)
AE2 (Grupo / Individual)	0,5 na AV2	8h	05/10 (SIA)
AE3 (Grupo / Individual)	0,5 na AV2	8h	19/10 (SIA)
AE4 (Grupo / Individual)	0,5 na AV2	8h	16/11 (SIA)
AE5 (Grupo / Individual)	0,5 na AV2	8h	30/11 (SIA)
P2 (Individual / Sem Consulta)	8,0 na AV2	2h	01/12 (Aula)
P3 (Individual / Sem Consulta)	8,0 na AV3	2h	15/12 (Aula)

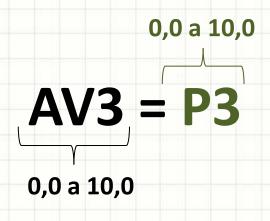
^(*) Consulta nos moldes da folha de referência fornecida no site da disciplina.

Trabalhos, Datas e Aprovação

- Atenção ao prazo de entrega das AE1 a AE5...
- As Atividades Estruturadas serão entregues pelo SIA e serão penalizadas em 1/5 de seu valor por dia de atraso.
- Mesmo que já não valham nota, elas precisam ser entregues, pois valem parte significativa da carga-horária!
- As atividades são grandes, não marque bobeira!

Trabalhos, Datas e Aprovação – AV1

- Prova P1 à caneta, incluindo o preenchimento do cabeçalho, ganha: 0,25 na P1
- Entregando a folha de consulta (dentro do padrão) com a prova, ganha: 0,25 na P1
- A nota da AE1 será somada à nota da prova P1 para compor a média AV1.


Trabalhos, Datas e Aprovação – AV2

 A nota das AE2 e AE5 (total de 0 a 2) será somada à nota da P2 para compor a nota AV2.

0,0 a 2,0 0,0 a 8,0
$$AV2 = AE2a5 + P2$$
0,0 a 10,0

Trabalhos, Datas e Aprovação – AV3

 A nota da AV3 é composta apenas da nota da avaliação P3! Cuidado!

Trabalhos, Datas e Aprovação - Final

```
A = Maior nota entre { AV1 , AV2 , AV3 }
```

B = Segunda maior nota entre { AV1 , AV2 , AV3 }

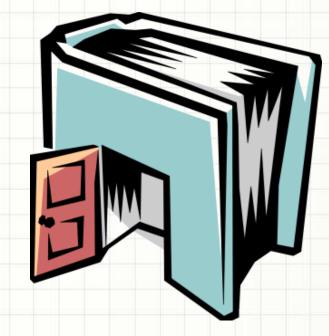
Critérios de Aprovação (TODOS precisam ser atendidos)

```
1) A \ge 4,0
```

2)
$$B \ge 4,0$$

3)
$$A + B \ge 12,0$$

4) Frequência ≥ 75%

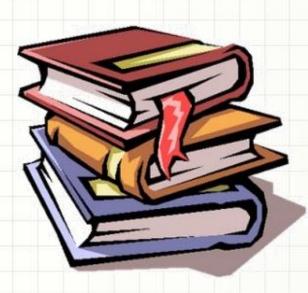

(Média 6,0!)

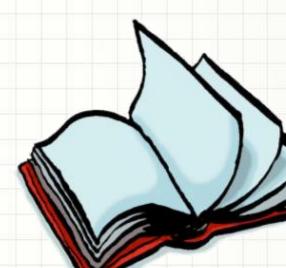
(No máximo 4 faltas!)

ATENÇÃO: Se você tiver mais que uma nota abaixo de 4,0, ainda que o SIA aponte uma média maior que 6,0, você estará REPROVADO!

BIBLIOGRAFIA E FONTES DE INFORMAÇÃO

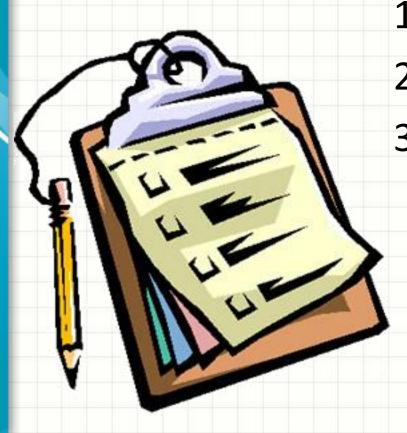
- Biblioteca Virtual
 - Estrutura de Dados

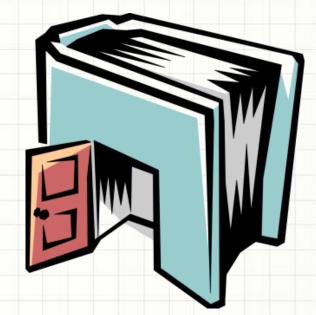

Material do Curso


- Estrutura de Dados Série Livros Didáticos Informática da UFRGS, Volume 18 (1ª Edição, 2009)
 - Edelweiss e Galante
 - Artmed / Bookman
 - ISBN: 9788577803811

Mais Livros!

- Estrutura de Dados: algoritmos, análise
 da complexidade e implementações em
 Java e C/C++ (1ª Edição, 2011)
 - Ascêncio e Araújo
 - Editora Pearson Education
 - ISBN: 9788576058816 BIBLIOTECA VIRTUAL!
- Lógica de Programação: a construção de algoritmos e estruturas de dados (3º Edição, 2005)
 - Forbellone e Eberspacher
 - Editora Pearson
 - ISBN: 9788576050247 BIBLIOTECA VIRTUAL

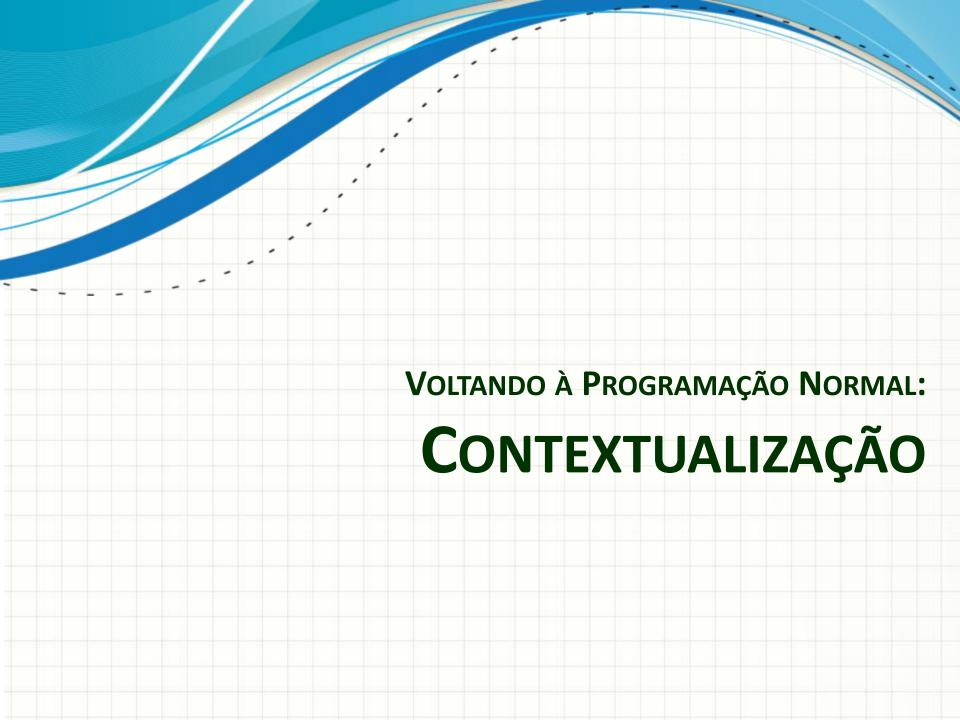

- Ótimo apoio!
 - C Completo e Total (3ª Edição, 1996)
 - Herbert Schildt
 - Makron Books / Pearson
 - ISBN: 8534605955


Material Didático

Deve Ser Solicitado no SIA

- 1. Entre no SIA
- 2. SECRETARIA VIRTUAL
- 3. **SOLICITAÇÃO DE MATERIAL**

 Notas de Aula e Apresentações


http://www.caetano.eng.br/

FORMAÇÃO DE GRUPOS DE TRABALHO

Formação de Grupos

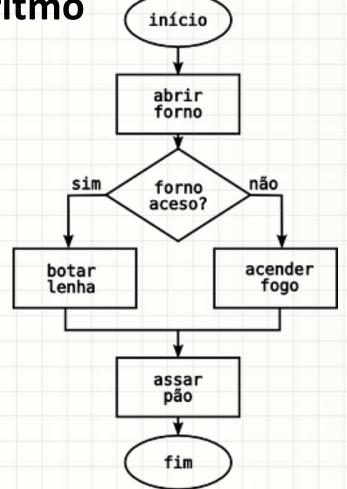
- Por que formar grupos?
- Quantos alunos?
 - No mínimo 4 alunos
 - No máximo 8 alunos
- Entregar, na <u>aula que vem</u>, lista de NOMES de cada aluno, indicando o NOME DA EQUIPE.
- Atenção:
 - Elejam UM responsável por subir os dados no SIA,
 que deve fornecer o e-mail para o professor!

Contextualização

- Continuação de Algoritmos
 - Qual a melhor forma de implementar?
- Relação Disciplina x Curso
 - Desenvolvimento de Software
 - Análise / Projeto de Software
 - Sistemas Operacionais
 - Banco de Dados
- Empregabilidade?
 - Criatividade e senso critico
 - Domínio da programação

COMO ERAM OS ALGORITMOS, MESMO?

O que são Algoritmos


- Toda tarefa complexa pode ser subdividida
 - Tarefas menores e mais simples
- Exemplo: fabricar vinho para venda
 - Plantar a uva
 - Colher a uva
 - Amassar a uva
 - Deixar fermentar
 - Engarrafar
 - Distribuir para a venda

O que são Algoritmos

 O procedimento para realizar uma tarefa complexa chama-se algoritmo

- Um algoritmo envolve:
 - Tarefas/Processos
 - Decisões

Fluxograma

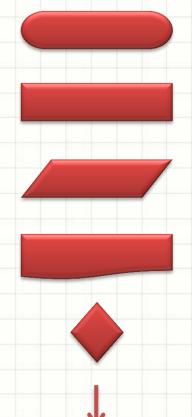
Forma gráfica tradicional

Início e fim de algoritmo

Processo (trabalho do computador)

Entrada de dados (leitura)

Saída de dados (impressão)


Tomada de decisão

Sentido do fluxo de dados

Fluxograma

Forma gráfica tradicional

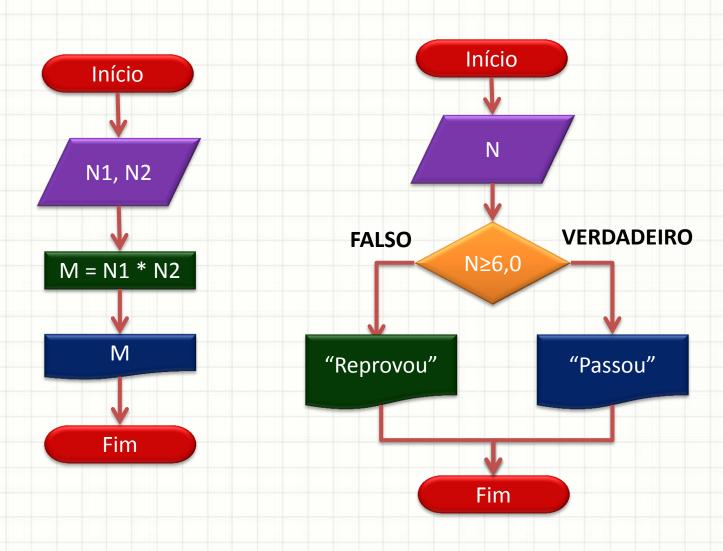
Início e fim de algoritmo

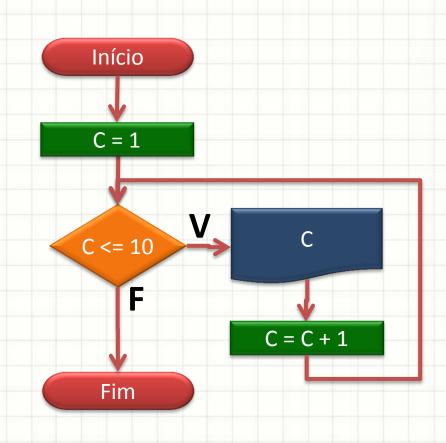
Processo (trabalho do computador)

Entrada de dados (leitura)

Saída de dados (impressão)

Tomada de decisão


Sentido do fluxo de dados



Exemplos de Fluxograma

Exemplos de Fluxograma

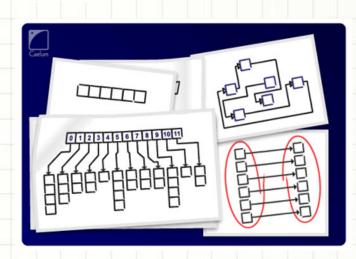
Exemplos de Linguagem C++

```
#include <iostream>
using namespace std;
main()
   int C;
   C = 0;
   while (C < 1000)
     cout << "Sei programar!";</pre>
     cout << endl;
     C = C + 1;
```

Exemplos de Linguagem C++

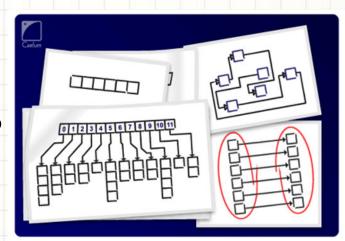
```
#include <iostream>
using namespace std;
main() // Imprime contador
   int C;
   C = 0;
   while (C < 1000)
     cout << C << " - ";
     cout << "Sei programar!";</pre>
     cout << endl;
     C = C + 1;
```

Exemplos de Linguagem C++


```
#include <iostream>
using namespace std;
main()
   int N1, N2, R, C;
   cout << "Digite um No.: ";</pre>
   cin >> N1;
   cout << "Digite outro No.: ";</pre>
   cin >> N2;
   C = 0;
   while ( C <= N1 )
      R = C * N2;
      cout << C << "*" << N2 << "=" << R << endl;
      C = C + 1;
```

ESTRUTURA DE DADOS? HEIN?!

Estrutura de Dados


- Programa = Algoritmo + Dados
- Resolução de Problema: abstração
- Cadastro de Clientes
 - Quais dados são importantes?

– Qual o algoritmo usar?

Estrutura de Dados

- Programa = Algoritmo + Dados
- Resolução de Problema: abstração
- Cadastro de Clientes
 - Quais dados são importantes?
 - A idade do cliente é importante?
 - A cor do cabelo do cliente é importante?
 - Qual o algoritmo usar?
 - Como encontrar um cliente?
 - Como inserir um novo cliente?

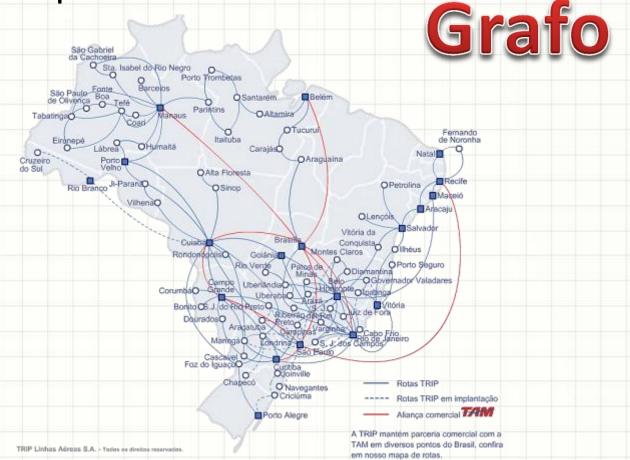
Estrutura de Dados

- O que é um "dado digital"?
- O que o diferencia de "lixo digital"?
- Sua organização
 - Sabemos como encontrá-los
- E isso permite...
 - Busca
 - Remoção
 - Inserção...
- Organização → Desempenho

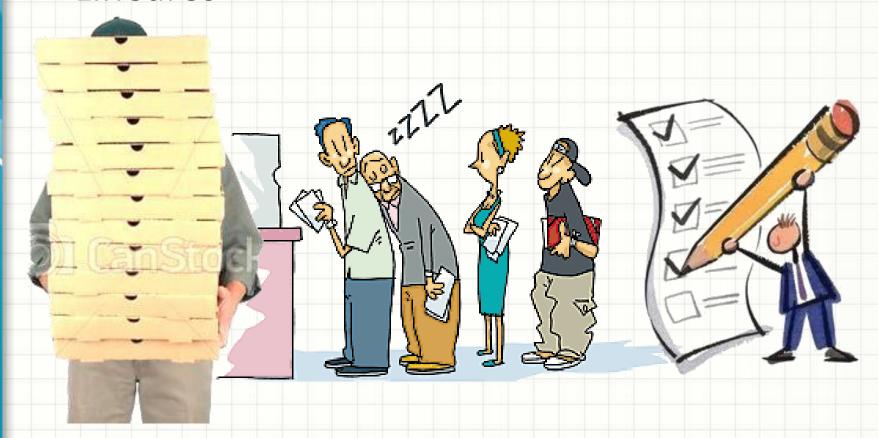
- Representar a organização de uma empresa
 - 1 presidente, 1 vice-presidente, 1 diretor de vendas e 1 de criação, este último com 2 subdiretores?

- Como representar a bibliografia do curso?
 - Estrutura de Dados: algoritmos, análise da complexidade e implementações em Java e C/C++
 - Lógica de Programação: a construção de algoritmos e estruturas de dados

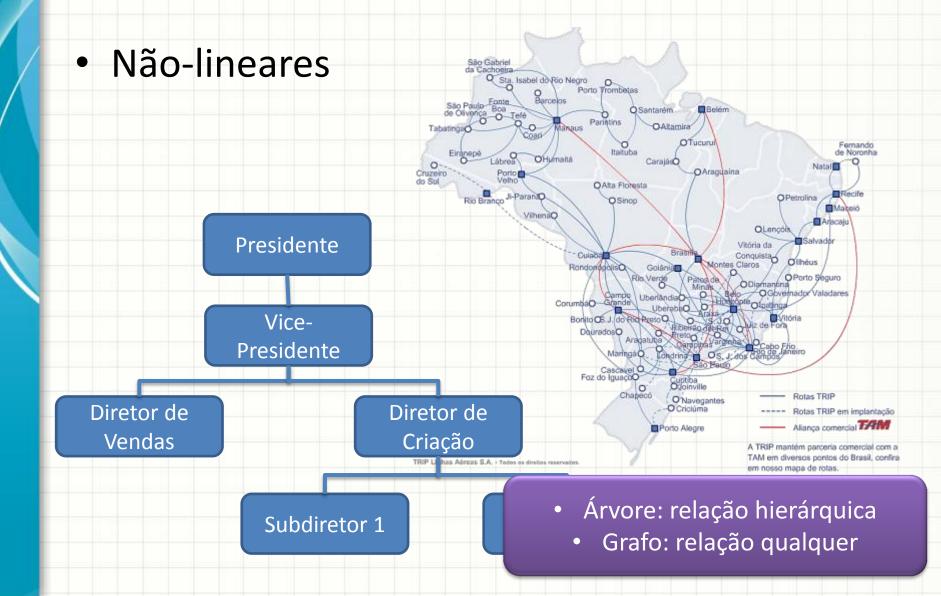
 Estrutura de Dados – Série Livros Didáticos Informática da UFRGS, Volume 18

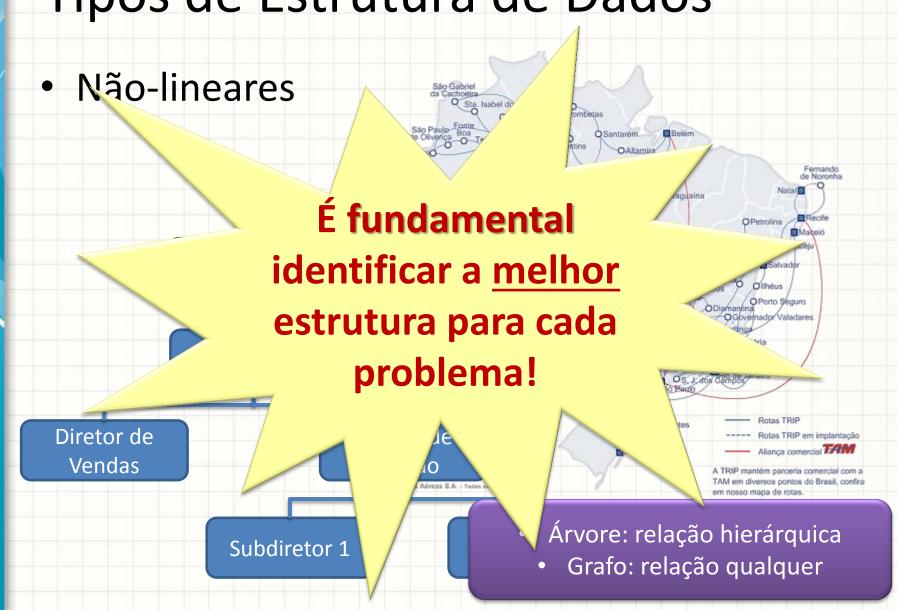

Como o motoboy organiza as pizzas?

Como as pessoas esperam no banco?



 Como representar os trajetos possíveis em uma companhia aérea?


- Lineares x Não-lineares
- Lineares



- Lineares x Não-line
- Lineares

- 1º. Elemento bem definido
- Último elemento bem definido
- Elementos intermediários: um antecessor e um sucessor

FORMAS DE ARMAZENAMENTO E MANIPULAÇÃO DE ESTRUTURA DE DADOS

Armazenamento de Estruturas

- Duas maneiras de armazenar
 - Sequencial (ou contígua)
 - Espaço pré-alocado
 - Tamanho pré-definido
 - Encadeada (ou ligada)
 - Tamanho inicialmente desconhecido
 - Alocação à medida da necessidade
- Neste curso
 - Estruturas lineares sequenciais e encadeadas

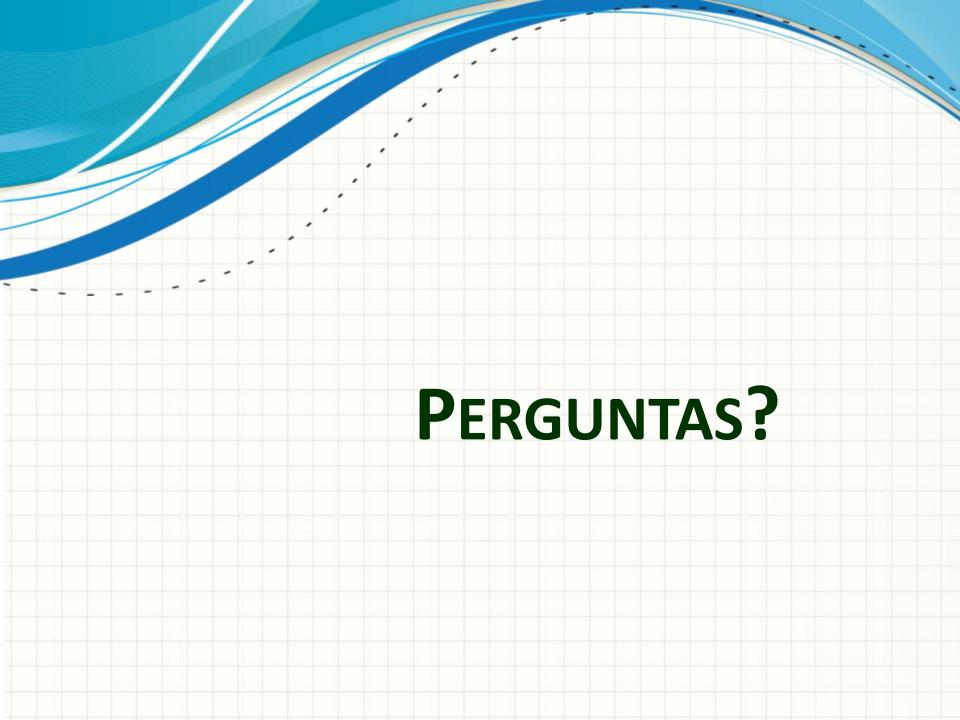
Armazenamento de Estruturas

- Iniciaremos com as sequenciais...
- Qual o tipo de variável de C/C++ que serve para guardar, sequencialmente na memória, muitos dados iguais?
 - Vetores
- Vamos começar com uma lista de números
 - Que operações vocês conseguem imaginar?
 - O que gostaríamos de poder fazer com uma lista?

Manipulação de Estruturas

- Imagine uma lista de notas
 - Inicialmente vazia
- Inserir notas
- Remover notas
- Buscar notas...
- Como realizar essas tarefas?

 Existiria muita diferença se tivéssemos uma lista de alunos? Ou uma lista de rendimentos?

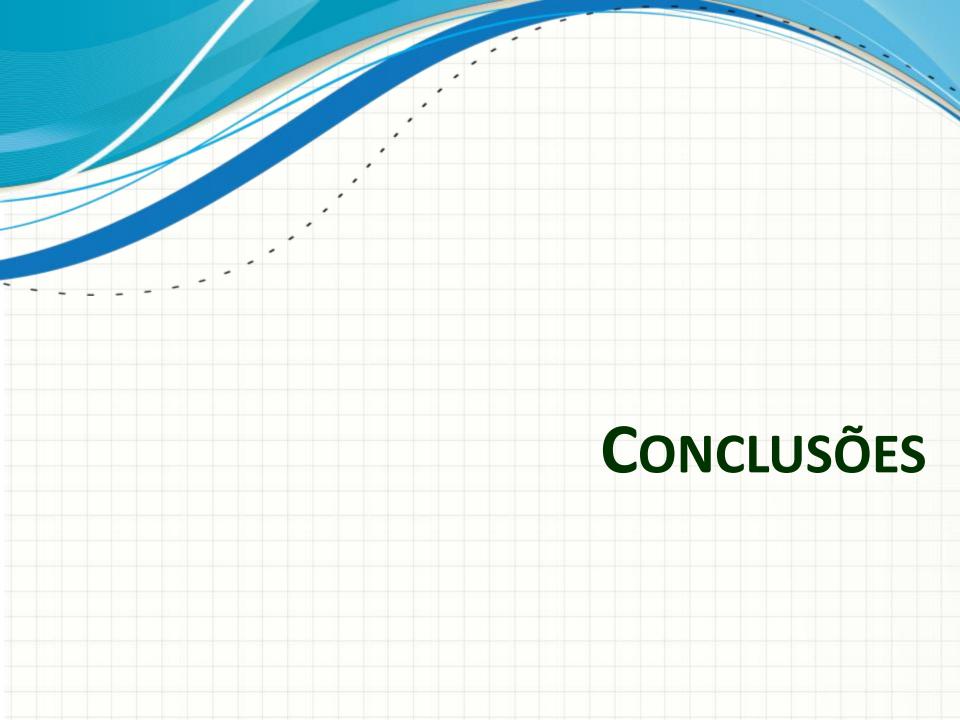

Manipulação de Estruturas

- Inserir, Remover e Buscar serão semelhantes para qualquer lista
- Sempre que precisarmos inserir, o código é o mesmo
- Que tal criarmos um algoritmo chamado inserir, por exemplo?
 - Sempre que precisarmos inserir um valor, bastará solicitar que o computador execute o algoritmo inserir

Manipulação de Estruturas

- Esses "algoritmos" com nome recebem o nome de funções
- Antes de estudarmos as estruturas em si...
 - Vamos aprender a implementar funções!

Exercícios de Fixação


1) Qual a melhor estrutura de dados para representar o sistema de pastas e arquivos do sistema operacional?

- a) Pilha
- b) Fila
- c) Árvore
- d) Grafo

Exercícios de Fixação

2) Os navegadores web armazenam as páginas visitadas de maneira que ao apertar o botão "voltar" a última página visitada seja apresentada, retirando este endereço da estrutura. Considerando só esse aspecto, qual é a melhor estrutura de dados?

- a) Pilha
- b) Fila
- c) Árvore
- d) Lista

Resumo

- Planos de Ensino e Aula
- Datas de avaliações e critérios de aprovação
- Fontes de informação
- O que são dados e estrutura de dados
- Operações e usos comuns de estruturas

- Funções?
 - O que são?
 - Para que servem?