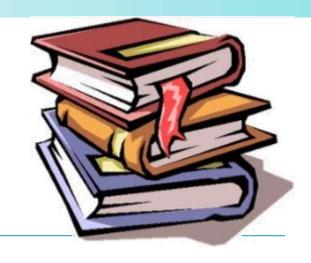

ARQUITETURA DE COMPUTADORES

REPRESENTAÇÃO DE DADOS: BASES DE NUMERAÇÃO

Prof. Dr. Daniel Caetano 2022 - 1

Compreendendo o problema

• **Situação:** o computador não trabalha os dados da mesma forma que nós, humanos...

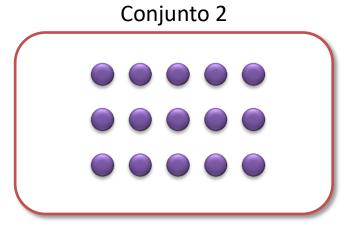


Como podemos compreendê-lo melhor?

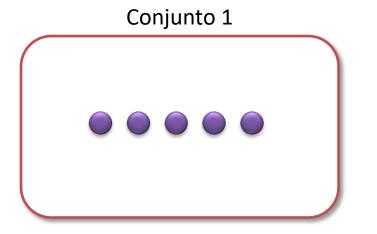
Objetivos

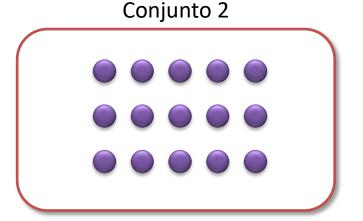
- Compreender o que é uma representação numérica
- Compreender as representações numéricas posicionais
- Conhecer as bases binária, octal e hexadecimal

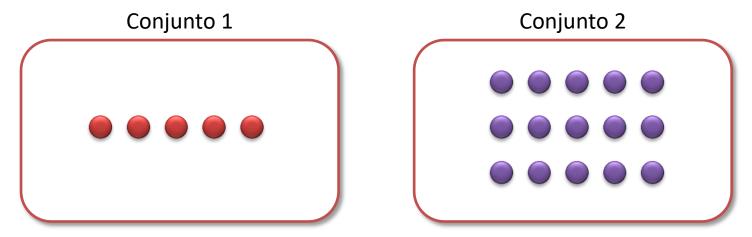
Material de Estudo



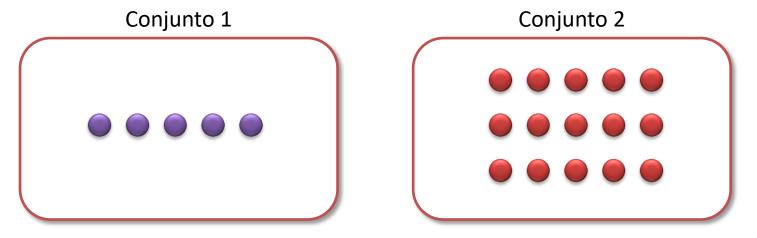
Material	Acesso ao Material
Notas de Aula e Apresentação	https://www.caetano.eng.br/aulas/2022a/ara0039.php (Arquitetura de Computadores – Aula 07)
Material Base	 Introdução à Organização de Computadores (Monteiro) Capítulo 3, item 3.2; Apêndice A. Organização de Computadores (Polli, SAVA), cap. 2.
Material Adicional	 Sistemas de numeração: http://www.mecaweb.com.br/eletronica/content/e_numeracao Significado do sistema de numeração decimal: https://www.significados.com.br/sistemadenumeracaodecimal/ Conhecendo a ordem dos números: https://escolakids.uol.com.br/matematica/conhecendoaordemdosnumeros.htm


REPRESENTAÇÕES Numéricas


- Diferenciar: Números x Quantidades
- Quantidade de Elementos
 - Contagem de um conjunto
 - Pode-se comparar quantidades, mesmo sem nomeá-las



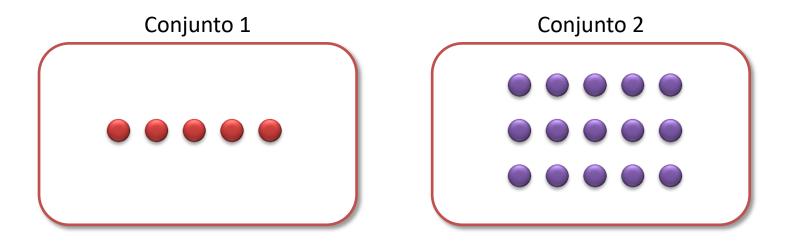
 Números: representações convenientes para as quantidades



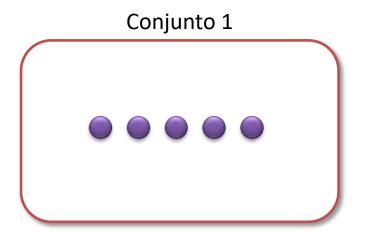
 Números: representações convenientes para as quantidades

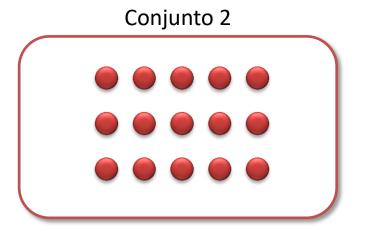
O Conjunto 1 tem 5 bolinhas

 Números: representações convenientes para as quantidades


- O Conjunto 1 tem 5 bolinhas
- O Conjunto 2 tem 15 bolinhas

- O Conjunto 1 tem 5 bolinhas
- O Conjunto 2 tem 15 bolinhas


- Não é única...
- ...nem foi a primeira!
- Representação decimal com numerais hindu-arábicos
- Há outras formas de representar?
- Sem dúvida...
 - Por exemplo, numerais romanos
 - Uso de letras para representar quantidades:
 - − I, V, X, L C, M...


Representação numérica romana

O Conjunto 1 tem V bolinhas

Representação numérica romana

- O Conjunto 1 tem V bolinhas
- O Conjunto 2 tem XV bolinhas

Contagem de 0 a 15 em várias bases

Base		Representação														
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Romana	-	I	Ш	Ш	IV	V	VI	VII	VIII	IX	Χ	ΧI	XII	XIII	XIV	XV
Binária	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Hexa- decimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

 Em cada coluna, várias representações da mesma quantidade!

- Por que essa confusão toda?
- Algumas representações são muito antigas
 - Inadequadas para realizar cálculos!
- Substituídas por:
 - base decimal
 - numerais hindu-arábicos
- Por que base decimal?
 - Bem, temos 10 dedos nas mãos...
 - ...essa é a base natural dos seres humanos

- No caso dos computadores...
- Temos de representar números com <u>fios</u>
- Um fio tem dois estados
 - Passa corrente...
 - ...ou não passa corrente

- 1 0
- Essa é a chamada representação binária
- Cada dígito binário, chamado bit, é representado por um fio no circuito

- Base: indica quanto símbolos há por dígito
- Observe que, quanto menor a base, mais rápido eu preciso de mais dígitos!

Base	Representação															
Binária	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexa- decimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

- Base binária é desajeitada!
- Binário e decimal: sem relação fácil!

- Base: indica quanto símbolos há por dígito
- Observe que, quanto menor a base, mais rápido eu preciso de mais dígitos!

Base		Representação														
Binária	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexa- decimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

- Por isso usamos outras bases...
- Cada dígito octal equivale a 3 bits...
- Arquite Eroemahte xadecimal equivale a 4 bits Prof. Dr. Daniel Caetano

- Em eletrônica, é comum usar notação hexadecimal!
- Por exemplo, suponha que um mouse esteja na "porta 2F8" (em hexadecimal)
- 2F8 (em hexa) é o mesmo que 1011111000 (em binário)
 - Calma! Veremos essas conversões em uma aula futura!
- Isso significa que, para acionar o mouse, precisamos acionar os seguintes fios:

Fio	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Corrente	0	0	0	0	0	0	1	0	1	1	1	1	1	0	0	0

- Convenção de notação numérica
- Decimais: normalmente
 - -5,30,44
- Binários: com um b ao final (ou um índice 2)
 - 101b, 11110b, 101100b, 101100₂
- Octais: com um ZERO à esquerda (ou índice 8)
 - $-05,036,054,73_{8}$
- Hexadecimais: com h ao final, 0x na frente (ou índice 16)
- Arquitetura de la putadores 2Ch, 0x5, 0x1E, 0x2C, 2C₁₆

- Por que essas notações são melhores?
- Por que elas permitem que sejam realizados cálculos com um mínimo de esforço!
- Por quê?

- Principal avanço da notação hindu-arábica decimal com relação à notação romana
- Como realizar a seguinte conta?

XIV +MCM ????

- A notação posicional permite calcular a quantidade que um número representa
- Por exemplo: que quantidade representa o símbolo 1?
- Se você respondeu "Um, oras!"... errou feio!
- A reposta correta é "depende!"
- Depende de quê?
- Da posição em que ele aparece no número completo!

- Observe o número 1537...
- O que ele significa, em termos de contagem?

Milhar	Centena	Dezena	Unidade
1	5	3	7

- 1x 1000 + 5x 100 + 3x 10 + 7x 1
- Observe que o valor de contagem de cada símbolo (algarismo) depende da posição

- Por exemplo... caso o 1 esteja na primeira casa, ele vale uma unidade.
- Se estiver na segunda casa, ele vale **uma dezena**...
- Se estiver na terceira casa, ele vale uma centena...
- E na quarta casa ele vale uma unidade de milhar...
- E assim por diante!
- 1 : Um
- 10 : Dez
- 100 : Cem
- 1000 : Mil
- 1101 : Mil cento e um

Vejamos. Considere o número abaixo

$$4532 = 4000 + 500 + 30 + 2$$

Coco	Milhar	Centena	Dezena	Unidade
Casa	3	2	1	0
Dígito	4	5	3	2
Quantidade	4.000	500	30	2

- Observe: na casa 3, há 3 zeros; na casa 2, há 2 zeros... E assim por diante!
- Isso não ocorre por acaso!

 Vamos escrever a tabela anterior de maneira um pouco diferente:

Casa	Milhar	Centena	Dezena	Unidade
CdSd	3	2	1	0
Dígito	4	5	3	2
Quantidade	4.000	500	30	2
Casa	3	2	1	0
Dígito	4	5	3	2
Quantidade	4x 1000	5x 100	3x 10	2x 1
Casa	3	2	1	0
Dígito	4	5	3	2
Quantidade	4 x 10 ³	5 x 10 ²	3×10^{1}	2 x 10 ⁰

Observe essa tabela...

Casa	3	2	1	0
Dígito	4	5	3	2
Quantidade	4 x 10 ³	5 x 10 ²	3 x 10 ¹	2 x 10 ⁰

- Qual a relação entre casa, dígito e quantidade?
- Observe que o expoente do "10" é exatamente o número da "casa", ou seja, da posição!
- Por que "10"? Porque a base é decimal e temos 10 símbolos para representar cada dígito.

- A base decimal usa dez símbolos para cada dígito: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- A base binária usa dois símbolos para cada dígito: 0, 1
- A base octal usa oito símbolos para cada dígito: 0, 1, 2, 3, 4, 5, 6, 7
- A base **hexadecimal** usa dezesseis símbolos para cada dígito: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...?

A, B, C, D, E, F!

- Como visto anteriormente, em circuitos digitais, números são representados pelo estado elétrico dos <u>fios</u>
- Um fio tem dois estados
 - Passa corrente...
 - ...ou não passa corrente
- Cada fio representa um dígito binário, chamado bit
- 1 bit tem dois valores possíveis: 0 e 1

- Mas então com números binários só é possível contar até 1?
- Não... O que fazemos, na base decimal, quando precisamos contar além do 9?
- Em binário também iremos acrescentar uma casa (um fio!) à esquerda...

- Com 2 bits representa-se... 00b, 01b, 10b, 11b... 4 valores.
- Com 3 bits...
 000b, 001b, 010b, 011b, 100b, 101b, 110b, 111b... 8 valores
- Com 4 bits...
 0000b, 0001b, 0010b, 0011b, 0100b, 0101b, 0110b, 0111b,
 1000b, 1001b, 1010b, 1011b, 1100b, 1101b, 1111b...
 ...são 16 valores
- Número de bits = número de dígitos binários

- Como já vimos, grupos de bits são nomeados:
 - 4 bits: Nibble
 - 8 bits: Byte
 - 16 bits: Word (palavra)
 - 32 bits: Dword (Double Word ou palavra dupla)
 - 64 bits: Qword (Quad Word ou palavra quádrupla)

- Como já vimos para as memórias, podemos saber quantas variações existem com n bits?
- Sim, regra prática!
 - Número de valores = 2ⁿ

Exemplo:

$$- 8 \text{ bits } \rightarrow 2^8 = 256$$

$$-10 \text{ bits} \rightarrow 2^{10} = 1024$$
 (1 KB)

$$-16 \text{ bits} \rightarrow 2^{16} = 65.536$$
 (64 KB)

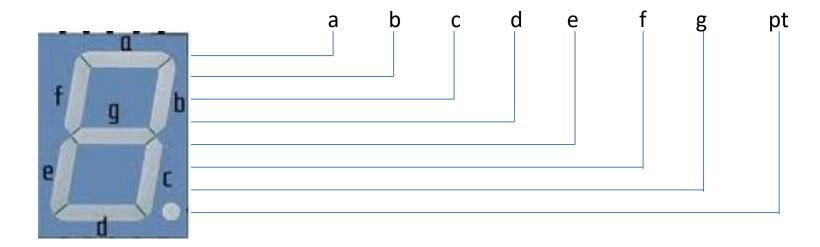

$$-32 \text{ bits} \rightarrow 2^{32} = 4.294.967.296$$
 (4 GB)

Tabela Pronta B→D para 4 bits

Binário	Decimal
0000b	0
0001b	1
0010b	2
0011b	3
0100b	4
0101b	5
0110b	6
0111b	7

Binário	Decimal
1000b	8
1001b	9
1010b	10
1011b	11
1100b	12
1101b	13
1110b	14
1111b	15

Considere o display de 7 segmentos abaixo

 1) Qual o valor binário que deve ser escrito para que a letra A maiúscula seja desenhada?

 Em uma linguagem de programação, foi definido o seguinte comando para escrever no display de 7 segmentos:

ligaDisplay(valor)

- Entretanto, o valor deve ser um decimal
- 2) Considerando o display do exercício anterior, qual valor deve ser usado para aparecer a letra A no display?

 3) Uma máquina gera códigos de erro numéricos. Os códigos de erro variam de 0 a 750. Qual o menor número de bits necessários para representar qualquer um dos códigos de erro?

 4) Qual é o número de combinações possíveis (ou seja, a quantidades de números que poremos representar) com 20 bits?

• 5) Qual é a hora indicada nos relógios abaixo, no formato hh:mm?

A Notação Octal

Notação Octal

- Notação octal:
 - Há 8 símbolos para cada dígito:
 - 0, 1, 2, 3, 4, 5, 6, 7
 - Simplifica o trabalho com tríades de bits
 - Permissões no Unix, por exemplo

$$0750 = 111101000b$$

– Relação?

Tabela Pronta $B \rightarrow D \rightarrow O$ para 4 bits

Binário	Decimal	Octal
0000b	0	0
0001b	1	1
0010b	2	2
0011b	3	3
0100b	4	4
0101b	5	5
0110b	6	6
0111b	7	7

Binário	Decimal	Octal
1000b	8	10
1001b	9	11
1010b	10	12
1011b	11	13
1100b	12	14
1101b	13	15
1110b	14	16
1111b	15	17

A NOTAÇÃO HEXADECIMAL

Notação Hexadecimal

- Notação hexadecimal:
 - Há 16 símbolos para cada dígito:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Simplifica o trabalho com números grandes

$$65123 = FE63h$$

- Facilita lidar com cores no CSS (FFC088)
- Facilita lidar com binários... veremos depois

Tabela Pronta $B \rightarrow D \rightarrow H$ para 4 bits

Binário	Decimal	Hexa- decimal
0000b	0	0
0001b	1	1
0010b	2	2
0011b	3	3
0100b	4	4
0101b	5	5
0110b	6	6
0111b	7	7

Binário	Decimal	Hexa- decimal
1000b	8	8
1001b	9	9
1010b	10	Α
1011b	11	В
1100b	12	С
1101b	13	D
1110b	14	Е
1111b	15	F

• 1) Converta o endereço de 16 bits para binário:

OxFC12

• 2) Converta-o para um octal

ENCERRAMENTO

Resumo e Próximos Passos

- O que são bases numéricas
- A notação posicional
- A base binária...
 - Octal e hexadecimal!
- Pós Aula: Saiba Mais, A Seguir e Desafio!
 - No mural: https://padlet.com/djcaetano/arquitetura/
- Como realizar conversões entre essas bases?
 - Método geral
 - Regra prática?

PERGUNTAS?