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ABSTRACT 

 
Schedule Generation and Fleet Assignment problems are usually solved separately. The 
integrated solution for both problems, albeit desirable, leads to large-scale models of the NP-Hard 
class. Some linear constraints on Fleet Assignment may become non-linear in the integrated 
problem, bringing further complexity to the solution process. This article presents a mathematical 
formulation of this integrated problem along with a new heuristic approach, called MAGS, based 
on the ACO metaheuristic. Both implementations include the same set of linear objective 
functions and constraints, addressing arrival and departure slots at airports and allowing aircraft 
load factor control. Both the exact solution and the one provided by MAGS are obtained and 
compared for the case of a Brazilian airline. The results show the applicability of MAGS to real 
world cases. 
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1. INTRODUCTION 
Along with the increasing passenger demand over the years, there was an increase in the 
frequency of flights, and a slight drop in the number of passengers per flight (Swan, 2002). This 
fact, in addition to the increasing competition among airlines, points toward the need of models 
to allow the definition of better air transport networks (Klabjan, 2004). Such problems are 
relatively complex, leading to NP-Hard models, composed of a large number of variables and 
constraints (Hane et al. 1995; Klabjan, 2004). Hence, there is a tendency to split the problem into 
stages (Rabetanety et al. 2006), simplifying the solution but possibly preventing the global 
optimal solution from being achieved. 
 
Two of the several stages of the operational planning of an airline - the Schedule Generation 
Problem (SGP) and the Fleet Assignment Problem (FAP), can be solved using integrated linear 
programming models, usually described as a minimum cost flow over a space-time network 
(Caetano and Gualda, 2010, 2011; Lohatepanont and Barnhart, 2006). Due to the NP-Hard 
characteristic of these models, their application to large scale problems is limited, requiring the 
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use of techniques to allow the solution for real sized airline networks, such as node clustering, 
column generation etc. (Hane et al., 1995). 
 
This paper presents an exact model based on linear programming and a heuristic model that 
incorporates the Ant Colony Optimization metaheuristic to solve Schedule Generation and Fleet 
Assignment stages in an integrated way, seeking global optimum solutions and applications to 
real world problems (Caetano, 2011; Caetano and Gualda, 2010; Rabetanety et al. 2006). 
 
Initially, a brief review of the concepts involved in solving SGP and FAP is presented, along with 
the description of the linear programming model. The mathematical model explanation is 
followed by the Multiple Ant Colony Group System heuristic, based on the traditional Ant 
Colony Optimization (Dorigo and Stützle; 2004), detailing the local search methods used. 
Finally, results obtained through the metaheuristic and the optimal results obtained with the linear 
programming model are presented, followed by a brief analysis and the conclusions of the study. 
 
2. MATHEMATICAL MODELING 
The operational planning of airlines can be divided into three interrelated problems: the definition 
of which flights to be offered, of which aircraft will be used for each flight, and of which crew 
will perform these flights. These steps are shown in Figure 1. 
 
The increasing complexity of aircraft, crew and passenger management, and the intensification of 
the competition between airlines led to the need to create models that include a growing number 
of routes and restrictions. Such large-scale models pose significant computational challenges, 
since many of them are of the NP-hard type (Hane et al., 1995). This behaviour may be even 
worse when models are used to simultaneously solve two or more stages of the problem, seeking 
a global optimization (Klabjan, 2004; Sherali et al. 2006; Rabetanety et al., 2006). 
 
While the Schedule Generation Problem (SGP) is usually solved observing flight frequency 
requirements defined by marketing-oriented decisions, the traditional approach to solve Fleet 
Assignment Models (FAM) is based on a space-time network, in which arrival or departure 
airports are represented by nodes. There are two basic types of arcs in this representation: flight 
leg arcs – connecting nodes that represent different airports – or waiting time arcs – connecting 
nodes that represent different times at the same airport (Berge and Hoperstead, 1993 apud Sherali 
et al., 2006; Hane et al. 1995). 
 
SGP and FAP may be solved using integer linear programming techniques. However, practical 
instances, representing the operation of major airlines, remain a challenge, given the 
computational complexity involved. 
 
Moreover, fleet assignment classical models assume that the flight schedule is previously 
defined, with every flight being covered. Traditionally, these models do not include operational 
restrictions at airports. To overcome these limitations, it is necessary to define a more 
comprehensive model. The model presented herein is based on the concept of space-time 
modeling, extended to cope with landing and departure slots by the addition of landing arcs that 
connect an arrival node to the first viable departure node, as shown in Figure 2. 



 
The fleet assignment model can be integrated to schedule generation with the addition of a 
penalty for non-served demand and relaxing the cover constraint so that not all flights must be 
assigned. 
 
The following sets, parameters and decision variables are defined to describe the model: 
 
 Sets 

 
M: set of all markets, indexed by m; each market defines a demand and a time window 

which limits which flights can serve this demand.  
Nf: set of all nodes for aircraft f, indexed by i, j, o, d or k, representing an airport at a specific 

time.  
Nrd: set of nodes with departure restrictions. 
Nra: set of nodes with landing restrictions. 
F: set of all types of aircraft, indexed by f. 
L: set of arcs that represent the movement of aircraft, maintenance, waiting on the ground or 

wrap, indexed by (i, j), being i the source node and j the destination node of the 
movement.  

Lv: set of arcs that represent flight movements. 
Lvd: set of arcs representing flights assigned to a market.  
Lt: set of arcs the origin time of which is equal to or less than t and destination time is after t. 

Time t is set to a valid time according to the problem.  
Lm: set of arcs associated to market m. 

 
 Decision Variables 

xf
ij: number of type f aircraft flowing through arc (i, j).  

paij: number of passengers flying from node i to node j. 
dij: number of potential passengers (demand) associated to the flight from node i to node j. 

 
 Parameters 

Dm: unrestricted passenger demand on market m.  
Cf: number of seats of type f aircraft. 
Rij: unitary revenue for a passenger in the flight from node i to node j. Since (i,j) represent a 

specific flight – including day and time – each flight may be associated with a specific 
unitary revenue. 

Af: number of type f aircraft available. 
µ: Cost coefficient for unoccupied seats. 
ν: Cost coefficient for non-served passengers. 
 

 
The objective function (expression 1) seeks to minimize the sum of lost revenues. The first term 
represents the difference between maximum revenue for the assigned aircraft and the revenue 
received from assigned passengers. The second term is associated to the lost revenue due to lost 
demand. The µ and ν parameters are used to control minimum aircraft load factor. 
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Binaries: 

{0,1}  ( , )f
ijx for i j Lvd∈ ∀ ∈  (10) 

 
Integers: 

0  ( , ) \f
ijx for i j L Lvd≥ ∀ ∈  (11) 

0  ( , )ijd for i j Lv≥ ∀ ∈  (12) 
0  ( , )ijpa for i j Lv≥ ∀ ∈  (13) 

 
Expressions 2 to 4 represent the traditional cover, balance and number of aircraft restrictions 
(Berge and Hoperstead, 1993 apud Sherali et al. 2006; Hane et al. 1995). 
 
Expressions 5 and 6 represent slot constraints, assuring that only one aircraft will depart or land 
on those nodes, respectively. Expressions 7 to 9 assure that each market demand will be 
associated to each flight and that the number of passengers of a flight will never be greater than 
the associated aircraft capacity. 
 
The variables representing demanded flight arcs are binary, and are specified in expression 10. 
All other arc variables are integers greater than or equal to zero, as stated in expression 11, 12 
and 13. 
 
2.2. Minimum Aircraft Load Factor 
Using an aircraft designed for C passengers on a specific flight, the revenue R for each seat may 
be given by the seat average cost c plus a profit p. As a consequence, the revenue for pa 
passengers can be obtained using expression 14. 



 
.   .( )R pa pa c p= +  (14) 

 
Assuming that there is a specific number of passengers pa, smaller than or equal to the aircraft 
capacity C – guaranteed in the model by expression 7 –, which pays the total cost, this number of 
passengers can be represented by expression 15. 
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R
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Since this number of passengers varies with aircraft capacity, the minimum load factor is usually 
given as the ratio pa/C, dubbed minimum load factor δ. This ratio is used to determine whether a 
flight is profitable – and therefore should be executed – or not. 
 
Traditional models limit the minimum load factor adopting a constraint forcing passenger per 
flight ratio above or equal to δ value, as shown in expression 16. The δ value is determined by the 
“break even” occupation – the exact number of passengers when the revenue is equal to the flight 
cost. 
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This approach has drawbacks: it will hinder the creation of solutions in which a flight with load 
factor below the minimum is required to perform one or more flights that, globally, lead to higher 
load factors.  

Another drawback associated to this approach is the model linearity. When FAP is individually 
solved, paij is a constant value and, therefore, expression 16 represents a linear constraint. 
However, this is not the case of the proposed integrated model, since paij is a decision variable.  

One possible solution for both problems is a relaxation of this restriction, obtaining its effect 
through two objective function parameters: µ and ν. 
 
The adopted objective function (expression 1) focuses on minimizing lost revenues. Assuming 
that p is the number of potential passengers and that p ≤ C, lost revenue with empty seats (LES) 
may be calculated by expression 17.  
 

. .( )LES R C pµ= −  (17) 
 
This expression represents the objective function when the flight is performed and all potential 
passengers are transported, that is, p = dij = pa ≤ C (only the first term of the objective function 
remains). 
 



On the other hand, assuming that the flight is not performed, no potential passenger will be 
transported. As a result, the lost revenue by not executing the flight (RLN) may be calculated by 
expression 18.  
 

. .RLN R pν=  (18) 
 
This expression represents the objective function when the flight is not performed at all and no 
passengers are transported, that is, p = dij and pa = 0 (only the second term of the objective 
function remains).  
 
A flight is considered viable by the model if LES ≤ RLN. This relation means that the limit 
between a flight to occur or not is defined by expression 19, which may be rewritten as 
expression 20. 
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This expression can be rewritten dividing every member of the right side by C, resulting in 
expression 21. 
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On the other hand, the p/C ratio is exactly the load factor δ of the aircraft, which allows the 
expression 21 to be rewritten as expression 22. 
 

1
µ δ
ν δ

=
−  (22) 

 
Although there is no direct relationship between the proposed objective function terms and the 
flight cost, control of minimum load factor δ is possible using the objective function coefficients 
µ and ν.  
 
Since the objective function is calculated for all flights, µ and ν will, in fact, control the 
minimum average load factor, weighted by the unitary revenue associated to each flight seat. 
Thus, the model will allow suboptimal flights to be executed in order to achieve global optimal 
flight sequences, when low occupation flights are considered as repositioning flights. The use of 
unitary revenue as weights leads to solutions in which low revenue flights are more easily 
discarded than high revenue ones. 



 
It is important to notice that there are differences between the terms presented in equation 19 and 
those in the objective function (expression 1). These differences exist only to accommodate 
situations in which the number of potential passengers is greater than the capacity of the aircraft 
selected to perform a specific flight. Expression 1 considers that each potential passengers not 
transported by insufficient aircraft capacity will cost the same as those not transported when the 
flight is not performed at all. 
 
 
3. ANT COLONY MODEL 
 
SGP and FAP are traditionally solved using integer linear programming techniques such as node 
clustering and constraint relaxation. However, practical instances, representing the operation of 
major airlines, remain a challenge, given the computational complexity involved. On the other 
hand, there are many heuristics capable of finding very good solutions to several types of 
combinatorial problems (Rayward-Smith et al., 1996 apud Abrahão, 2005), suggesting the search 
for heuristics that can provide appropriate solutions for the problem in lower processing times. 
The successful application to problems such as the Vehicle Routing Problem (VRP) and Aircraft 
Rotation Problem (ARP) draws attention to the metaheuristic known as Ant Colony Optimization 
(ACO), one of the many swarm intelligence metaheuristics (Teodorovic, 2008). 
 
3.1. Ant Colony Optimization 
The Ant Colony Optimization meta-heuristic (ACO) is described by the logic shown in Figure 3. 

 
In short, given a graph (N, A) with N nodes and A arcs, the solutions are built in an iterative 
process, governed by probabilistic decisions. Starting from a node n ∈ N, an arc a ∈ A which 
departs from n is selected accordingly to its probability. This probability is calculated through 
two fundamental values associated to each arc (i,j): one of them is the heuristic value ηij and shall 
be related to the problem being solved. The other value is the amount of pheromone τij associated 
to the arc. Assuming that Ni is the set of all arcs leaving node i, the probability of choosing an arc 
can be obtained by expression 23, where α and β are parameters that need to be adjusted to the 
problem (Dorigo and Stützle, 2004; Bonasser and Gualda, 2006). 
 

|( , )

.
.

i

ij ij
ij

il il
l i l N

p
α β

α β

τ η
τ η

∈

=
∑

 (23) 

 
Applications described by Dorigo and Stützle (2004) reveal that updating the pheromones only 
when the full path has already been composed by the ant yields better results than the pheromone 
update upon the selection of each arc, during the construction of a solution. Additionally, to 
assure that the pheromone level will increase faster in better paths, the pheromone increment to 
the arcs of a solution should keep an inverse proportion with respect to the total solution length or 
cost, when coping with minimization problems. 
 



Dorigo and Stützle (2004) defined auxiliary actions, such as the evaporation of pheromones over 
time, which reduce the attractiveness of bad, seldom selected paths; at the same time, it slows 
down the convergence towards a solution, broadening the solution space search for global 
optimum.  
 
Since the pheromone value multiply the numerator of the probability equation, as shown in 
expression 23, it cannot be initialized as zero. For the TSP, Dorigo and Stützle (2004) proposed 
an initial deposit of pheromone associated with each of the arcs of the graph, the value of which 
should be inversely proportional to the length of the solution obtained by the nearest 
neighborhood method.  
 
This kind of initial pheromone distribution provides similar probability for all arcs when the 
process starts, causing a broader search in the solution space and providing an initial 
diversification. Due to processes of pheromones updates and evaporation, the neighborhood 
search narrows as the heuristic evolves and thus promotes a gradual intensification. This 
approach, combined with an appropriate choice of α and β values, decreases the chance of a fast 
convergence towards a local optimum.  
 
The initial solutions for some combinatorial problems may have very poor quality if the problem 
characteristics are not well represented by the adopted heuristic value in expression 23. The 
heuristic value has a crucial role for the proper exploration of the specific problem solution space 
(Dorigo and Stützle, 2003). On the other hand, the definition of a proper heuristic value may be 
complex for some problems. The heuristic value tends to be myopic due to solution building 
rules, since the real quality of a given arc to the solution may also depend on the arcs to be 
selected later in the process. Thus, Dorigo and Stützle (2003) suggest the adoption of local search 
methods as one of the auxiliary actions in the ACO. It may be simpler to set up local searches 
that take into account the problem global characteristics. The principle is that the ACO will 
provide good initial solutions and the local search leads those initial solutions toward the 
optimum in its neighborhood. 
 
3.2. ACO Applied to the Integrated SGP and FAP 
Although it was possible to adapt the basic ACO metaheuristic to solve the integrated flight 
schedule and fleet assignment problem, the results obtained through such an approach were not 
satisfactory. Since the basic ACO leads to a single shortest path, it must be executed several 
times, assigning one aircraft at a time and removing the selected arcs from the list, leading to 
suboptimal solutions, with objective function values almost three times the optimal ones. 
 
One way to improve the results is the adoption of a representation with multiple colonies in 
which each colony represents one fleet. In this case, ants from one colony are repelled by other 
colonies pheromones, as proposed by Vrancx and Nowé (2006), which led to better results, but 
they remained far behind those obtained by linear programming, with objective function values 
of almost twice the optimal ones. A possible reason for these poor results is the dynamic 
characteristic of the demand assigned to each arc, since several arcs may share the demand of a 
market. Once more than one flight can compete for exactly the same passengers, the decisions 



made by one ant should be more tightly related to other ants’ paths. The inability to cope with 
this specific characteristic leads to unrealistic solutions and cause convergence problems.  
 
To improve the heuristic behaviour, the decisions made by some ants should produce more 
changes to the environment than simply adding attractive or repellent pheromones. The demand 
information should be updated upon the heuristic execution, improving each ant’s decision 
quality. However, the results obtained with the changes enumerated above are not the most 
satisfying, because probabilistic decision proposed by the ACO metaheuristic assumes that all 
arcs are directly comparable, i.e.: the heuristic information of different arcs are compatible and 
comparable, which allows an adequate exploration of the problem solution space. 
 
In the case of the mathematical model presented, there are different types of arcs. Each type of 
arc has a heuristic value which is not directly comparable to others: flight arcs can be compared 
by their direct profit, but how could one of them be compared to an arc that represents the aircraft 
that will wait on the ground? The direct profit of a ground arc is equal to zero or negative, if one 
considers the opportunity cost or the cost of staying at the airport. On the other hand, solutions 
using waiting arcs should be explored since sometimes it is better for an aircraft to wait for a 
flight with lots of passengers than not to wait and fly almost empty. There are particular 
situations in which waiting on the ground, instead of flying, leads to better overall solutions. 
 
Since the problem has specific characteristics that can be used to improve the overall solution, an 
alternative heuristic is proposed, called Multiple Ant Group System (MAGS), incorporating 
elements of Multiple Ant Colony Optimization (MACO)(Vrancx and Nowé, 2006), Multiple Ant 
Colony System (MACS) and Elitist Ant System (EAS)(Dorigo and Stützle, 2004), as well as new 
elements not present in other ACO metaheuristic variants. 
 
3.3. Multiple Ant Group System – MAGS Heuristic 
MAGS is a multiple ant colony heuristic, such as MACS and MACO. As in MACO, a solution is 
represented by multiple ants; on the other hand, the number of ants that build a specific solution 
is previously known: there must be one ant per aircraft. The ants that compose a solution are 
called an ant group. A group may be composed of ants from different colonies and, similarly to 
MACS, each colony has a different objective function. This means that ants from each colony 
make decisions based on different criteria. In MACS, however, pheromones are identical for all 
colonies, which means it is essentially different from MAGS. Each ant group in MAGS has the 
same role of a single ant in the basic ACO: the group of ants represents the complete objective 
function, and each ant is associated with a different term of this function. 
 
The proposed solution construction process is substantially different from the classical ACO in 
order to reduce the number of invalid and unrealistic solutions. During the construction of a 
solution, the ants of a group will alternately choose graph arcs. The group ant which will take the 
next step is randomly selected and whenever a flight arc is associated to an ant, this arc will be no 
longer available to other ants in the same group, ensuring the construction of solutions in which 
flight arcs are not shared by two or more aircraft. 
 



Additionally, when a flight is selected by an ant, part of the flight market demand is also 
allocated, reducing the demand available for other flights that share the same market. This 
strategy avoids the association of ants to flight arcs for which the demand is no longer available 
in that solution. As the demand for each arc becomes dynamic during the construction of the 
solution, the problem presents similar characteristics to the dynamic routing in communication 
networks, as solved by the AntNet heuristic (Dorigo and Stützle, 2004). The exclusion of arcs 
and the demand allocation during the solution construction have relevant effects on the results, 
which are complementary to those provided by the repellent pheromones proposed in MACO, 
which continues to affect the selection probability of each arc available.  
 
Considering the described construction process, each ant group has the same role as a single ant 
in the basic ACO: the group of ants represents the complete objective function, each ant 
associated with a different term of it. The MAGS basic logic is presented in Figure 4. 
  
As proposed by Dorigo and Stützle (2003), the nearest neighborhood solution can be adopted as 
an initial solution. In the problem addressed, the "nearest neighbor" was defined as the arc 
associated with the minimum revenue loss, avoiding waiting arcs whenever possible. The 
objective function value for this solution is used to determine the initial pheromone deposit in 
each arc.  
 
As defined by ACO, the arc selection follows a probabilistic selection, as depicted in Figure 5. 
On the other hand, differently from the basic ACO, the initial pheromone deposit is not the same 
for all arcs. Arcs associated with smaller heuristic values must receive substantially more 
pheromones in the initial distribution than those associated to higher heuristic values. 
Considering the basic ACO probability equation (expression 23), an increased pheromone deposit 
value in arcs that have low heuristic value will also increase their likelihood of being chosen, at 
least in the initial heuristic stage. 
 
The probability equation adopted (expression 24), however, presents some additional parameters. 
The first one is φij, which represents the amount of pheromone of other colonies, as in MACO, 
with their respective coefficient γ. Additionally, parameter ρij reduces the probability of selecting 
a sequence of several unprofitable flights. The ρij value is always 1.0 for profitable flight, 
maintenance, and waiting arcs. For unprofitable flight arcs, its value starts as 1.0 but upon the 
addition of an unprofitable arc to the solution, the value of ρij is reduced by 50% for the next 
unprofitable flight arc. This value is only reset to 1.0 when a profitable flight is selected to 
compose the solution. 
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The ηij value is proportional to the flight profit, given that there is demand available in the 
market. The ηij is made equal to τij for repositioning flight arcs – which have no markets 
associated to them –, waiting arcs and maintenance arcs, since the heuristic value based on lost 
revenue in these arcs would always be non-positive. The objective of this measure is also to 
reduce the myopic heuristic behavior, adding more emphasis on the historical quality of the 
solutions containing a specific arc, which is represented by the pheromone deposit value. 
 
After the initial pheromone is distributed, g ant groups are generated, but no changes are made in 
pheromones, as in the basic ACO. As the generation of the ant groups is completed, pheromone 
evaporation takes place, at a fixed rate, and then all g ant groups will update their pheromone 
trails. As in the EAS, the best solution will reinforce its own pheromone trail, leading to 
convergence toward that solution.  
 
The pheromone deposit for each ant group is proportional to the objective function value, as in 
the basic ACO, but each ant of that group shall deposit only part of the group total pheromone: 
the amount of pheromone each ant of a group deposits is proportional to the ant contribution to 
the quality of the solution represented by that group. The proposed distribution rule is defined by 
expression 25, where τf is the deposit of each ant, with τg = 1/Cg, where Cg is the cost of the 
solution represented by the group, calculated through the objective function. Rf is the revenue 
generated by that ant and MRg is the maximum revenue that could be generated by that group of 
ants. 
 

.{0.5 [ / 2. ]}f g f gR MRτ τ= +  (25) 
 
This formulation guarantees that each ant will deposit a value not smaller than 50% of the deposit 
calculated for the group and also ensures that it will increase when the ant has a large 
contribution to the group total revenue. 
 
Even adopting the techniques proposed previously, very bad solutions are commonly built, 
limiting the basic heuristic quality. Hence, when each ant group finishes its solution construction, 
a local search is performed to improve that solution. 
 
 
3.3.1. MAGS Local Search Methods 
 
This local search is divided into two steps: LS, which is quicker and handles all the solutions, and 
LS2, which is slower and processes only the solutions that have a value close to the optimum one 
or are too far from it.  
 
LS is a procedure that removes sequences of two unprofitable flight arcs, as shown in Figures 6a 
and 6b. This enhances the chance of improvement by LS2, which supplements LS,  looking for 
profitable flights that could replace waiting arcs in each ant path, as shown in Figure 6c. 
 



LS procedure also includes a corrective heuristic, which adjusts the solution so that each ant 
terminal and initial airports are the same, since this is not guaranteed by the basic heuristic. The 
procedure considers three ways of correcting the final destination: removing final solution flights, 
as shown in Figures 7a and 7b, adding profitable flights, as shown in Figure 7c, or even adding 
non-profitable arcs, since aircraft solutions with different initial and final airports are not 
considered viable. 
 
4. APPLICATION AND RESULTS 
 
The linear programming model and the MAGS heuristic were applied to instances based on a 
domestic regional airline case that encompasses 104 weekly flights and uses three ATR-42/300 
aircraft (for 50 passengers each). Alternative flight networks were generated, composed by 
different fleet configurations, involving Embraer 120 (for 30 passengers each) and Embraer 170 
(for 70 passengers each). Several instances (3 to 9) also include alternative flights for a new 
destination, expanding the base network to 164 weekly flights, plus thousands of potential 
repositioning flights, with no markets associated to them.  
 
Three types of demand distribution are considered in different instances. 

 
 Fixed: the demand associated to each flight is fixed at 50 passengers (Instances 1 to 3). 
 Flight: the demand is associated to each flight and is the average demand per flight, based 

on values provided by the Brazilian Civil Aviation regulatory agency – ANAC (2007) 
(Instances 4 to 6). 

 Period: the demand between two airports associated to a period of day – morning or evening 
– is the average demand by day period, based on values provided by ANAC (2007) 
(Instances 7 to 9). 

 
Moreover, every instance was presented in two forms: instances marked as “A” were solved with 
µ = ν = 1, which means a minimum average load factor δ = 50%; instances marked as “B” were 
solved with µ = 3 and ν = 1, leading to a minimum average load factor δ = 75%. 
 
The instances were solved by integer linear programming techniques through Gurobi Optimizing 
software version 4, in an Intel Core2 Quad computer with 2GB of memory, using four processing 
cores and 200GB of available virtual memory. The MAGS heuristic was implemented using the 
Java SE version 6, running in the same equipment while using only one of the cores, since 
MAGS was not implemented using parallel programming. 
 
Table 1 shows the results obtained by both the exact mathematical model and MAGS for some of 
the instances, given a weekly schedule. The resulting values of the objective function represent 
the total lost revenue and, thus, the lower the value, the better the solution. 
 
Analyzing these results, it is possible to notice that the MAGS heuristic leads to values very close 
to those obtained by the exact mathematical model, with small standard deviations. When 
comparing processing times, MAGS heuristic times are more consistent with the problem 
complexity in terms of arcs and fleets. On more complex problems, involving more fleets, arcs 



and with multiple flights competing for the demand of each market (instances 5 to 9), MAGS 
heuristic processing times are usually lower when compared to processing times of the exact 
model solved with the Gurobi Optimizer, even without a parallel implementation for MAGS. The 
average MAGS processing time per arc was of 0.04 seconds.  
 
When considering the more complex problems (instances 5 to 9), it is also possible to notice that 
“B” instances are usually solved in smaller processing times than “A” instances, for both exact 
and heuristic models. One possible reason for this behavior is the fact that the number of 
profitable flight sequences is smaller when higher load factors are required. 
 
The minimum values obtained, shown in Table 2, are even closer to the optimal ones: while the 
average values are distant by up to 7.9% of the optimum, the minima are no more than 3% 
greater than the optimum value for each case. 
 
The number of transported passengers and resulting load factors are shown in Table 3, which is 
organized in a different way to allow easy comparison between occupations on “A” and “B” 
instances, as well as the results achieved by the exact model, tagged as “E”, and heuristic model, 
tagged as “H”. 
 
Although in general the average load factor is above 75% (even for “A” instances), several  
results in Table 3 show the effect of changing µ and ν values. “B” instances present increased 
load factors compared to the corresponding “A” instances, for both exact and heuristic models. 
Also, the improvement in the average load factor was similar for both models. This can also be 
observed by comparing, in relative terms, the reduction of transported passengers, which is 
generally smaller than the reduction of executed flights. 
 
It is possible to notice that the minimum load factor usually increases from “A” to “B” instances, 
but the acceptance of occupation ratios lower than the minimum load factor is common. This 
means that those flights are necessary to deploy the aircraft at the origin of a sequence of flights 
with high occupation, to attain lower objective function values. Flights below the minimum 
required load factor are not a problem when the resulting average load factor is higher than the 
minimum required load factor. This requirement is not met for instance 22H, which means the 
result is not viable. 
 

CONCLUSIONS 
This study presents and compares results of two types of models to solve the flight schedule and 
the fleet assignment problems in an integrated way. Both models incorporate the same objective 
function and constraints, including real world operational restrictions such as slots at airports and 
control over minimum average aircraft load factor without losing their linear characteristics.  
 
The first model relies on Linear Programming and considers several constraints common to real 
airport operations such as competing flight markets and departure and arrival slots. Furthermore, 
the model incorporates a new way to set a minimum average load factor, eliminating the need of 
non-linear constraints. 



 
The second model, a heuristic approach called MAGS – Multiple Ant Group System – is based 
on the ACO metaheuristic and incorporates the same constraints present in the exact model. In 
order to represent and to solve the proposed problem, MAGS presents a distinctive way to 
determine the initial pheromone level on each arc, as well as new alternative rules for the 
construction of solutions, each one being represented by multiple ants that compete among 
themselves for arcs and demands associated to those arcs. In addition, the multiple ant solution 
representation required a new rule for pheromone updating.  
 
The exact model could reach optimal solutions for relatively simpler instances. When considering 
more complex instances, MAGS reached very close results to the optimal ones in smaller 
processing times, addressing the possibility to utilize it to solve larger real world problems. 
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Figure 1: Airline Operational Planning Stages 

 

 
Figure 2: Space-Time Network. 

 

 
Figure 3: Basic ACO procedure 

procedure ACO 
   Scheduled Activities 
      Build Ant Solutions 
      Update Pheromone Trails  
      Auxiliary Actions   %optional 
   end Scheduled Activities 
end procedure 



 
Figure 4: MAGS basic logic. 

 
 

 
Figure 5: When waiting on airport 1, an ant may choose different arcs to continue, with 

different probabilities. 
 
 

 
Figure 6: LS and LS2 basic procedures: original solution (a), low demand flight removal by 

LS (b) and high demand flight inclusion (c). 
 

procedure MAGS 
  Setup Parameters 
  best=Nearest Neighborhood Solution 
  Setup Pheromones 
  for i Iterations 
    for g Ant Groups 
      Create Ant Group 
      sol=Build Ant Group Solution 
      sol=LocalSearch(sol) 
      if( sol < 1,05*best OR  
          sol > 2*best) 
        sol=LocalSearch2(sol) 
      if (sol < best) best=sol 
    end for g Ant Groups 
    Evaporate Pheromones 
    Update Pheromome trails 
    Update best AntGroup trail 
  end for i Iterations 
end Procedure 



 
Figure 7: LS correction procedure: original solution (a), flight removal correction (b) and 

extra flight correction (c). 
 

Table 1: Exact model and MAGS average results. 

Instance 
 

Demand 
Type 

Fleets / 
Aircraft δ Arcs 

Flight Arcs / 
Repositioning 

Arcs (Potential) 

Exact Model MAGS (10 Runs Average) 

O.F. 
Value Time(s) O.F. 

Value*** Std.Dev. Avg. 
Time (s) 

1A Fixed 3 / 3 50% 35,367 312 / 15.636 0 3 0 0 0 

1B Fixed 3 / 3 75% 35,367 312 / 15.636 0 5 0 0 3 

2A Fixed 3 / 3 50% 35,367 312 / 15.636 92,200 3 92,200 0 548 

2B Fixed 3 / 3 75% 35,367 312 / 15.636 230,500 3 238,590 1,061 973 

3A Fixed 3 / 3 50% 44,907 492 / 20.316 175,000 7 177,500 0 1,240 

3B Fixed 3 / 3 75% 44,907 492 / 20.316 175,000 6 177,500 0 1,181 

4A Flight 3 / 3 50% 44,907 492 / 20.316 897,345 14 918,174 2,463 1299 

4B Flight 3 / 3 75% 44,907 492 / 20.316 915,785 18 961,331 14,946 1,096 

5A Flight 5 / 5 50% 74,845 820 / 33.860 809,365 172,800* 819,779 1,351 1,478 

5B Flight 5 / 5 75% 74,845 820 / 33.860 819,815 1,844 882,253 14,007 1,173 

6A Flight 3 / 5 50% 44,907 492 / 20.316 810,345 14,249 838,928 7,882 1,562 

6B Flight 3 / 5 75% 44,907 492 / 20.316 819,815 919 884,689 8,695 970 

7A Period 1 / 3 50% 14,969 164 / 6.772 868,650 68 873,812 4,057 1,844 

7B Period 1 / 3 75% 14,969 164 / 6.772 868,650 43 912,530 4,334 749 

8A Period 2 / 3 50% 29,938 328 / 13.544 812,650 78,133** 827,188 7,152 2,501 

8B Period 2 / 3 75% 29,938 328 / 13.544 812,650 46 854,254 9,510 955 

9A Period 3 / 5 50% 29,938 328 / 13.544 788,550 172,800* 794,782 5,998 6,195 

9B Period 3 / 5 75% 29,938 328 / 13.544 793,950 172,800* 839,344 12,659 1,797 
(*) Processing was interrupted after the 2-day time limit (172.800 seconds). 
(**) Processing was interrupted due to insufficient memory (2GiB RAM + 200GiB hard disk virtual memory). 
(***) Average values do not include the constructive heuristic results. 
 



Table 2: MAGS minimum results. 
 

Instance 
MAGS (10 Runs Minimum)  

Instance 
MAGS (10 Runs Minimum) 

Value* MAGS / 
Optimum 

Average 
Time (s) 

 
Value* MAGS / 

Optimum 
Average 
Time (s) 

1A 0 100.0% 0  1B 0 100% 0 

2A 92,200 100.0% 548  2B 208,000 90.2%** 973 

3A 177,500 101.4% 1,240  3B 177,500 101.4% 1,181 

4A 916,475 102.1% 1,299  4B 923,225 100.8% 1,096 

5A 818,825 101.2% 1,478  5B 839,435 102.4% 1,173 

6A 832,965 102.8% 1,562  6B 837,065 102.1% 970 

7A 871,170 100.3% 1,844  7B 878,450 101.1% 749 

8A 819,830 100.9% 2,501  8B 816,290 100.4% 955 

9A 790,210 100.2% 6,195  9B 794,150 100,0% 1,797 

(*) Minimum values do not include the constructive heuristic results. 
(**) Minimum average load factor was not accomplished. 

 
 

Table 3: Minimum and Average Load Factor. 

 A - δ = 50% B - δ = 75% 

Inst.* Passengers Flights Load Factor (%) Revenue 
Lost Passengers Flights Load Factor (%) Revenue 

Lost Average Minimum Average Minimum 
1 E 5,200 104 100 100 0 5200 104 100 100 0 
1 H 5,200 104 100 100 0 5200 104 100 100 0 
2 E 5,200 104 71.4 71.4 92,200 0 0 - - 230,500 
2 H 5,200 104 71.4 71.4 92,200 750 15 71.4 71.4 208,000 
3 E 4,700 94 100 100 175,000 4,700 94 100 100 175,000 
3 H 5,200 104 100 100 177,500 5,200 104 100 100 177,500 
4 E 3,555 80 92.3 44 897,345 3,503 76 96.8 66 915,785 
4 H 3,934 102 83.1 28 916,475 3,663 82 94.1 28 923,225 
5 E 4,993 127 88.7 44 809,365 4,264 101 95.5 66 819,815 
5 H 4,912 124 86.9 28 818,825 4,294 107 92.7 44 839,435 
6 E 4,931 126 89.2 44 810,345 4,264 101 95.5 66 819,815 
6 H 4,827 126 85.8 0 832,965 4,279 107 91.9 28 837,065 
7 E 3,930 84 95.6 88 868,650 3,930 84 95.6 88 868,650 
7 H 4,090 92 92.8 30 871,170 3,881 84 95 34 878,450 
8 E 4,330 84 95.6 88 812,650 4,330 84 95.6 88 812,650 
8 H 4,409 86 94.4 70 819,830 4,325 85 94.9 34 816,290 
9 E 5,215 143 88.9 46.7 788,550 4,745 109 93.6 56.7 793,950 
9 H 5,206 145 88.9 0 790,210 4,850 107 92.3 30 794,150 

(*) E refers to the exact model and H to the heuristic model. 
 


	This approach has drawbacks: it will hinder the creation of solutions in which a flight with load factor below the minimum is required to perform one or more flights that, globally, lead to higher load factors.
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